# Synthesis and Characterizations of New Ferrocenyl Schiff Base with NLO Responses

Bang Jing LI, Wan Yi LIU, Tong XIE, Guo Sheng HUANG\*, Yong Xiang MA

Department of Chemisty, Lanzhou University, Lanzhou 730000

**Abstract:** A series of new stable (thermal and photochemical) ferrocenyl derivatives containing C=N bond and benzene ring in long conjugated chains have been synthesized and characterized by <sup>1</sup>HNMR(400MHz), IR, and elemental analysis. Pull-push ferrocenyl complexes that we have prepared have strong NLO responses identified by electronic absorption spectrum.

Keywords: Ferrocenyl, Schiff base, NLO, C=N.

## Introduction

There is considerable interest in materials with NLO (nonlinear optics) properties in the past ten years<sup>1, 2</sup>. It has stated that the use of organometallic compounds with NLO has a wide fan of advantages<sup>3</sup> that make them appropriate in the field of nonlinear optics. It is possible to be used as promising material because of stability of ferrocenyl complexes to heat and optics.

Recently, K.R.J. Thomas  $et.al^4$  have investigated new ferrocene based donor-acceptor complexes containing thiophene and furan in the conjugation chain. In these case, the importance of the push-pull structure skeleton has been stressed as one of the factors allowing for cooperative NLO properties.

We report here in the facile synthesis of novel push-pull ferrocenyl Schiff base containing benzene ring, C=N and C=C bond. We have obtained six new compounds containing a typical electron-donor moiety (ferrocene) and a electron-acceptor fragment (-NO<sub>2</sub>, -Cl) without center of symmetry. C=N bond and benzene ring which are seemed as conjugated chains deliver electronic effects.

#### Experimental

The procedures of synthesis are listed in **scheme**. Compound **1** was obtained according to literature methods<sup>5</sup>. Aromatic aldehydes were obtained according to literature methods<sup>6,7</sup>, too. Typical procedure for synthesis of **2**, **3**, **4**, **5**, **6** and **7**: 0.005mol *p*-ferrocenyl phenylamine was dissolved in 10 mL ethanol, many drops of acetic acid was added. Aromatic aldehyde (in 10 mL dried ethanol) was added dropwise during 10 min. The precipitate was formed in 5 min, then the mixture was continued to stir for 3 hr at

room temperature. The product was filtered, washed with 10 mL ethanol, dried in vacuum. The mp., yield, elemental analysis of products are listed in **Table 1**.



Reagents and conditions: a) p-NO<sub>2</sub>-Ph-NH<sub>2</sub>, HCl, NaNO<sub>2</sub>, 0-5°C; b) Sn, HCl/EtOH, reflux; c)x-Ph-CH=CH-CHO, EtOH, r.t; d)x-Ph-CHO, EtOH, r.t.

|   | Formula                   | mp.° C  | yield% | Elemental analysis % |        |       |       |
|---|---------------------------|---------|--------|----------------------|--------|-------|-------|
|   |                           |         |        | Cacld.               | C68.82 | H4.62 | N6.42 |
| 2 | $C_{25}H_{20}FeN_2O_2$    | 198-200 | 98     | Found.               | C68.94 | H4.39 | N6.53 |
| 3 | $C_{25}H_{20}FeN_2O_2$    | 219-221 | 98.5   | Cacld.               | C68.82 | H4.62 | N6.42 |
|   |                           |         |        | Found.               | C68.59 | H4.63 | N6.40 |
|   |                           |         |        | Cacld.               | C76.72 | H5.41 | N3.58 |
| 4 | $C_{25}H_{21}FeN$         | 172-174 | 97     | Found.               | C76.68 | H5.67 | N3.53 |
| 5 | C23H18ClFeN               | 202-204 | 98     | Cacld.               | C69.10 | H4.54 | N3.51 |
|   |                           |         |        | Found.               | C68.87 | H4.57 | N3.53 |
|   |                           |         |        | Cacld.               | C67.32 | H4.43 | N6.83 |
| 6 | $C_{23}H_{18}FeN_2O_2$    | 134-136 | 96.5   | Found.               | C67.18 | H4.71 | N6.93 |
|   |                           |         |        | Cacld.               | C67.32 | H4.43 | N6.83 |
| 7 | $C_{23}H_{18}FeN_2O_2 \\$ | 244-246 | 99     | Found.               | C66.98 | H4.78 | N6.83 |

**Table 1** The data of product **2**, **3**, **4**, **5**, **6** and **7** 

#### **Results and discussion**

The reactions were carried out at room temperature because all products are stable conjugated system. Acetic acid was added as catalyst in order to make the reactions easy.

The Chemical shift<sup>8</sup> of the five protons on the unsubstituted cyclopentadienyl ring of ferrocenyl is observed at 4.05-4.06. The protons signal of substituted cyclopentadienyl ring appears at 4.33-4.36(2H) and 4.66-4.68(2H), which have considerable downfield chemical shifts. And the coupling constant of *trans*- isomer

equals 14-18Hz, it is predominant in molecule. The *trans*- isomers may have nonlinear responses<sup>2</sup>. No attempt was made to separate the isomer. But the isomeric mixtures were mainly converted into *trans*- isomer by heating in toluene for  $4 \text{ hr}^4$ .

The important  $IR^8$  absorption of the compounds **2**, **3**, **4**, **5**, **6** and **7** at 1604.9, 1597.9,1618.0, 1620.0, 1635.0, 1589.7cm<sup>-1</sup>, respectively, are assigned to v (-C=N-).

| compound | $\lambda \max(nm)$ | $\in \max(M^{-1}cm^{-1} \times 10^3)$ |
|----------|--------------------|---------------------------------------|
| 2        | 377                | 18.32                                 |
|          | 485                | 4.48                                  |
| 3        | 359                | 10.00                                 |
|          | 481                | 2.44                                  |
| 4        | 361                | 16.44                                 |
|          | 461                | 2.92                                  |
| 5        | 367                | 13.00                                 |
|          | 465                | 3.24                                  |
| 6        | 359                | 17.56                                 |
|          | 458                | 2.72                                  |
| 7        | 352                | 15.92                                 |
|          | 454                | 2.64                                  |

 Table 2 Electronic absorption data for 2-7\*

\*Data measured for dichloromethane solution of concentration  $5 \times 10^{-5}$  M.

| Sol. | $Et_2O$ | MeCN | Me <sub>2</sub> CO | THF | MeOH | $CH_2Cl_2$ | DMF | DMSO |
|------|---------|------|--------------------|-----|------|------------|-----|------|
| 2    | 356     | 362  | 364                | 366 | 373  | 377        | 382 | 427  |
|      | 448     | 462  | 474                | 475 | 485  | 485        | 491 | 595  |
| 3    | 309     | 337  | 341                | 347 | 359  | 360        | 353 | 443  |
|      | 437     | 454  | 466                | 470 | 476  | 481        | 477 | 599  |
| 4    | 330     | 338  | 349                | 359 | 360  | 361        | 366 | 488  |
|      | 429     | 439  | 443                | 454 | 458  | 461        | 473 | 536  |
| 5    | 333     | 347  | 355                | 363 | 366  | 367        | 372 | 434  |
|      | 423     | 429  | 443                | 449 | 463  | 465        | 449 | 538  |
| 6    | 320     | 329  | 344                | 351 | 355  | 359        | 358 | 406  |
|      | 422     | 426  | 438                | 449 | 457  | 458        | 451 | 529  |
| 7    | 317     | 332  | 337                | 340 | 350  | 352        | 358 | 426  |
|      | 431     | 438  | 447                | 448 | 455  | 454        | 461 | 537  |

Table 3 Solvatochromic data for 2-7

The solution electronic absorption spectral studies of compounds are designed to possess NLO properties. Firstly, it is necessary to know the transparency region. Secondly, the solvatochromic behavior of the products is generally considered as indicative of high molecular hyperpolarisability and potential NLO properties. The electronic absorption data and solvatochromic data were listed in **Table 2** and **Table 3**. The compounds **2-7** have absorption data in transparency region listed in **Table 2**. In **Table 3**, prominent solvatochromic effects were observed, too. All these data indicate the compounds have NLO response.

### Acknowledgment

The program was supported by the Natural Science Foundation of Gansu.

#### **References and notes**

- M. L. H. Green, S. R. Marder, M. E. Thompson, J. A. Bandy, D. Bloor, P. V. Kolinsky, R.J. Jones, *Nature*, **1987**, *330*, 360.
- 2. D.R.Kains, M.A.Ratner, T. J.Marks, Chem. Rev., 1994, 94, 195.
- 3. I.R. Whittal, A.M. McDagh, M.G. Humphrey, M.Samoc, Adv. Organomet. Chem., 1998, 42, 291.
- 4. K.R.J.Thomas, J.T.Lin, Y.S.Wen, J. Organomet. Chem., 1999, 575, 301.
- 5. P.Hu, K.Q. Zhao, L.F. Zhang, He Cheng Hua Xue, 1998, 6(4), 438.
- 6. W.Davey, J.R. Gwilt, J. Chem. Soc., 1955, 1384.
- 7. T. Nishimura, Bull. Chem. Soc. Jap., 1952, 25, 54.
- 8. 8.Compound **2**: IR (KBr)cm<sup>-1</sup>: 3099w, 1604.9s, 1524.7vs, 846.23s, 822.35m. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 400MHz)  $\delta$ ppm: 4.06(s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.35(s, 2H, C<sub>5</sub>H<sub>4</sub>), 4.67(s, 2H, C<sub>5</sub>H<sub>4</sub>), 7.13(t, 1H, CH=CH), 7.6(d, 1H, CH=CH), 7.19(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.51(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.54(t, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 7.67(t, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 7.71(d, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.04(d, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.42(d, 1H, CH=N).

Compound **3**: IR (KBr)cm<sup>-1</sup>: 3079w, 1597.9s, 1512.8vs, 856.2s, 820.0s. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz)  $\delta$ ppm: 4.05(s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.36(s, 2H, C<sub>5</sub>H<sub>4</sub>), 4.66(s, 2H, C<sub>5</sub>H<sub>4</sub>), 7.21(t, 1H, CH=CH), 7.24(d, 1H, CH=CH), 7.26(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.51(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.70(d, 2H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.27(d, 2H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.43(d, 1H, CH=N).

Compound 4: IR (KBr)cm<sup>-1</sup>: 3091m, 1618.0vs, 1518.1vs, 844.7s, 815.44m. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz)  $\delta$ ppm: 4.06(s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.33(s, 2H, C<sub>5</sub>H<sub>4</sub>), 4.67(s, 2H, C<sub>5</sub>H<sub>4</sub>), 7.17(t, 1H, C<sub>6</sub>H<sub>5</sub>), 7.19(t, 2H, C<sub>6</sub>H<sub>5</sub>), 7.36(d, 1H, CH=CH), 7.40(t, 1H, CH=CH), 7.40(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.49(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.58(d, 2H, C<sub>6</sub>H<sub>5</sub>), 8.36(d, 1H, CH=N). Compound **5**: IR (KBr)cm<sup>-1</sup>: 3087w, 1620.0m, 846.6s, 818.0m. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz)

Compound **5**: IR (KBr)cm<sup>-1</sup>: 3087w, 1620.0m, 846.6s, 818.0m. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz)  $\delta$ ppm: 4.05(s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.53(s, 2H, C<sub>5</sub>H<sub>4</sub>), 4.66(s, 2H, C<sub>5</sub>H<sub>4</sub>), 7.20(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.52(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.47(d, 2H, C<sub>6</sub>H<sub>4</sub>-Cl), 7.86(d, 2H, C<sub>6</sub>H<sub>4</sub>-Cl), 8.50(s, 1H, CH=N).

Compound **6**: IR (KBr)cm<sup>-1</sup>: 3079m, 1635.0m, 849.5s, 816.3m. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz)  $\delta$ ppm: 4.06(s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.35(s, 2H, C<sub>5</sub>H<sub>4</sub>), 4.68(s, 2H, C<sub>5</sub>H<sub>4</sub>), 7.22(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.53(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.67(t, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.27(d, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.32(d, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.62(s, 1H, CH=N), 8.76(s, 1H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>). Compound **7**: IR (KBr)cm<sup>-1</sup>: 3079s, 1589.7s, 858.6s, 848.8s. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz) $\delta$ ppm:

Compound **7**: IR (KBr)cm<sup>-1</sup>: 3079s, 1589.7s, 858.6s, 848.8s. <sup>1</sup>HNMR(CDCl<sub>3</sub>, 400MHz) $\delta$ ppm: 4.06(s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.36(s, 2H, C<sub>5</sub>H<sub>4</sub>), 4.68(s, 2H, C<sub>5</sub>H<sub>4</sub>), 7.24(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 7.53(d, 2H, Fc-C<sub>6</sub>H<sub>4</sub>-), 8.10(d, 2H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.33(d, 2H, C<sub>6</sub>H<sub>4</sub>-NO<sub>2</sub>), 8.63(s, 1H, CH=N).

Received 14 January 2000